Windows Bare Metal Servers on NSX-T overlay Networks

Featured

In this post, I will configure Windows 2016/2019 bare metal server as an transport node in NSX-T and then also will configure a NSX-T overlay segment on a Windows 2016/2019 server bare metal server, which allow VM and bare metal server on the same network to communicate.

To use NSX-T Data Center on a windows physical server (Bare Metal server), let’s first understand few terminologies which we will use in this post.

  • Application – represents the actual application running on the physical server server, such as a web server or a data base server.
  • Application Interface – represents the network interface card (NIC) which the application uses for sending and receiving traffic. One application interface per physical server server is supported.
  • Management Interface – represents the NIC which manages the physical server server.
  • VIF – the peer of the application interface which is attached to the logical switch. This is similar to a VM vNIC.

Now lets configure our windows server to operate in NSX overlay environment:

Enable WinRM service on Windows 2019

First of all we need to enable Windows Remote Management (WinRM) on Windows Server 2016/2019 to allow the Windows server to interoperate with third-party software and hardware. To enable the WinRM service with a self-signed certificate, Run:

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12
PS$ wget -o ConfigureWinRMService.ps1 https://raw.github.com/vmware/bare-metal-server-integration-with-nsxt/blob/master/bms-ansible-nsx/windows/ConfigureWinRMService.ps1
PS$ powershell.exe -ExecutionPolicy ByPass -File ConfigureWinRMService.ps1.

Run the following command to verify the configuration of WinRM listeners:

winrm e winrm/config/listener

NOTE- For production bare metal servers, please enable winrm with HTTPS for security reasons and procedure is explained here

Installing NSX-T Kernel Module on Windows 2019 Server

Now let’s proceed with installing the NSX kernel module on the Windows Server 2016/2019 bare metal server. Make sure to download NSX kernel module for Windows server 2016/2019 with the same version of your NSX-T instance from VMware downloads

Start the installation of the NSX kernel module by executing the .exe file on your Windows BM server.

Configure the bare metal server as a transport node in NSX-T

Before we add the bare metal server as a transport node, we must need to create a new uplink profile in NSX-T that we are going to use for the bare metal servers. An uplink profile defines policies for the uplinks. The settings defined by uplink profiles can include teaming policies, active and standby links, transport VLAN ID, and MTU setting.

In my Lab the windows 2016/2019 bare metal server will have two network adapters, one NIC in the management VLAN and the other one is on a TEP VLAN (VLAN160).

once uplink profile is configured, We can now proceed with adding the Windows 2016/2019 bare metal server as transport node into NSX-T. In the NSX-T web page go to System –> Fabric –> Nodes and click on +ADD

Enter Management Interface IP address of your windows bare metal host and its credential, and do not change the Installation Location, it will validate your credentials against windows BM and then will allow you to move next

On the next screen, choose virtual switch name or leave it default, select overlay transport zone as we are connecting this to overlay and select uplink profile and management uplink interface.

on the next screen, configure IP address, Subnet and GW for TEP interface, this could be using specifying static IP list or choosing an IP pool which belongs to TEP VLAN.

Click on Next , This will start preparing your Winodws BM for NSX-T

​Once preparation/config completed, we can attach segment from above screen or we can Continue Later, lets click on “Continue Later” for now, we will add in different step.

Now if you see your windows BM in NSX-T console, it is ready for NSX-T and asking us to attach an overlay segment.

Attach Overlay Segement

Select host in the “Host Transport Nodes” section and click on “Action” and then click on “Manage Segment” which takes you to same screen that SELECT SEGMENT would have during original deployment

now select which segment the Application Interface for the Physical Server will reside on and click on “ADD SEGMENT PORT”

​Add Segment Port and Attach Application Interface

On the add Segment port screen:

Choose Assign New IP (This will be your application IP on Windows BM) – > NSX Interface Name (Default is “nsx-eth”) – This is Application Interface Name on Physical Server

Default Gateway –> Provide – T0 or T1 Gateway address

IP Assignment – i am doing Static, but you can also do DHCP or IP Pool for application interface.

Save –Once save is pressed, configuration is sent to Physical Server and you can see on physical server that Application IP has been assigned to an virtual interface.

Now you can see host config in NSX-T Manager console, everything is green and showing up.

Now if you see you can reach to this Bare Metal from a VM with IP address “172.16.20.101” which is on the same segment as this physical server without doing bridging.

if you click on windows server , you can see other information and specifically the “Geneve Tunnels” between ESXi host on which VM is running and Windows BM host on which your application is running.

This completes the configuration, this gives customers/partners an opportunity to run VM and Bare Metal servers on same network and security (like micro-segmentation) can be managed from single console that is NSX-T console. i hope this helps. please share your feedback 🙂